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Abstract— This paper introduces a method for in-situ under-
water target classification, based on an image retrieval system,
that can be implemented using a simple two-layer kernel-based
network. This system incorporates a learning mechanism that
captures new information for discriminating between objects
in different classes or within the same class from a set of
input-output pairs with associated confidence scores. A strategy
to select the most informative patterns for optimal parameter
adaptation during in-situ learning is also described. The system
is then tested on a database of synthetically generated sonar
images. The ability of the system to correctly classify images
containing objects in different environmental and operating
conditions than those used for original training, as well as its
ability to incorporate new object types without perturbing the
classification performance on other object types are demon-
strated.

I. INTRODUCTION

Classification of underwater objects in sonar imagery [1]-
[2] is a complicated problem due to various factors such as
variations in operating and environmental conditions, pres-
ence of spatially varying clutter, variations in target highlight
and shadow structures with respect to aspect angle, range
and grazing angle, and variations in compositions of the
objects. Moreover, bottom features such as coral reefs, sand
formations, and vegetation may obscure a target. One way to
alleviate the difficulties caused by these variations is through
the use of a computer-aided detection and classification
(CAD/CAC) system that performs in-situ learning, and thus
takes into account environmental and operating condition
changes as well as the presence of new contacts and man-
made or natural clutter. Consequently, such a CAD/CAC
system can offer high classification accuracy and flexibility
in making reliable decisions in such conditions.

Various methods have been explored for target classifi-
cation in sonar imagery. The reader is referred to [1]-[2]
for more details. One major issue with these previously
developed CAD/CAC systems is that they lack the ability to
perform in-situ learning and, consequently, do not offer high
classification accuracy and flexibility in making reliable de-
cisions in new environmental and operating conditions. The
main goal of this paper is therefore to develop a CAD/CAC
system with in-situ learning capability for classification of
underwater objects in sonar imagery. The proposed system
is based on the extension of the method in [3], which is
a content-based image retrieval (CBIR) system that can be
implemented using a two-layer kernel-based network. This
system incorporates a model-reference learning mechanism

Mahmood R. Azimi-Sadjadi and Neil Wachowski are with Information
System Technologies, Inc., Fort Collins, CO 80521 (email: mo@infsyst.biz).

for capturing the class and/or within-class (details that sepa-
rate images within the same class) information from a set
of input-output pairs and associated confidence scores. A
novel strategy to select the most informative patterns for
optimal parameter adaptation during in-situ learning was also
introduced using the Fisher information matrix. This paper
discusses extensions made to the system in [3] to allow
implementation as a flexible classifier for sonar imagery.
Specifically, we discuss (a) proper selection of a set of ex-
emplar patterns used to initialize the system and to represent
the entire image database during retrieval, (b) a framework
that can be used to perform in-situ learning to correctly
classify (or identify) a new image that is drawn from an
entirely new environment (e.g. background clutter), and (c)
the approach used to incorporate samples that represent
new object types encountered during the in-situ learning.
This framework was chosen because it offers some distinct
advantages over alternatives such as support vector machines
[4], Bayesian inference [5], and radial basis functions [6].
That is, the method in [3] does not rely on assumptions about
the clustering behavior of positive and negative samples and
offers precise control over the relevancy scores.

This paper is organized as follows. Section II discusses
the details of the proposed CBIR system for in-situ learning,
including the model reference learning mechanism, selective
sampling framework, and its implementation as a kernel-
based network. In Section III the sonar image databases
that are used to perform the experiments conducted in this
study are described. Section IV discusses the framework
used to apply the proposed CBIR system to the problem
of classifying objects in sonar imagery with in-situ learning
taking place during testing. The results of applying the
proposed system to the sonar image databases are also
presented. Finally, Section V provides concluding remarks.

II. PROPOSED CBIR SYSTEM WITH IN-SITU LEARNING

The structure of the proposed system is shown in Figure
1. It contains several components, namely the nonlinear
mapping function Φ(·) : RM → RNf with Nf � M that
maps the original M -dimensional feature vector xj (extracted
from an image) to a high dimensional feature space, a series
of adaptable implicit feature mapping matrices Aj’s that
adapt the matching functions in the high dimensional feature
space, a retrieval or scoring system that generates labels
and confidence scores for the applied pattern, and model-
reference learning for situations where class membership
and desired scores of samples in a new environment are
available. It should be noted that this system is also capable
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of relevance feedback learning [3] for incorporation of expert
operator’s high-level concepts as shown in Figure 1; though
the experiments conducted here do not make use of this type
of learning. The proposed system captures the environmental
context and high-level semantic information not only by a
series of adaptable mapping matrices Aj but also by proper
choice of the high dimensional nonlinear mapping function
Φ(·).

Fig. 1. In-situ adaptable target classification system with model-reference
and relevance feedback learning.

Upon submitting a pattern (feature) vector q, the system
performs a similarity matching in the high dimensional fea-
ture space to generate confidence scores for those exemplar
patterns that are already captured in the original training
database X = [x1x2 · · · xN ] with known class labels. This
is done using

rj(q) = s(q, xj) = ΦT (xj)AjΦ(q), j ∈ [1, N ] (1)

where Φ(q) = [φ1(q) φ2(q) . . . φNf
(q)]T with φj(·)’s

being scalar functions of the pattern q, similarly for Φ(xj),
and s(q, xj) is the matching (or scoring) function between the
submitted pattern q and stored exemplar patterns xj’s. Thus,
in this system the mapping function Φ(·) first maps both
patterns q and xj to the higher dimensional space, in which
feature mapping matrix Aj then shapes the matching space
for pattern xj . The mapping to a high dimensional feature
space together with multiple function adaptability provides
a much better opportunity to capture the information in new
operating and environmental conditions.

At first glance it may appear that finding a matrix for every
pattern in the database, X , is too inefficient and impractical,
especially in the large (possibly infinite) dimensional mapped
feature space. However, in our proposed method this is
entirely avoided using the kernel trick [4]. Additionally, the
proposed system in Figure 1 and all the learning rules can
be implemented using a simple structurally adaptive kernel
machine [3] as will be shown later.

A. Initialization

System initialization is required in any CBIR system to
train it based upon unlabeled and/or unstructured images in
the database. This one-step training typically involves storing
all the images and establishing a similarity measure for
initial and crude retrieval and classification. In the proposed
system the initial setup of similarity functions in (1) involves
choosing initial mapping matrices Aj , j ∈ [1, N ] given
only the initial image database X with N images. Since,
except the images xj’s, no other information is available
in this phase, the mapping matrices can be initialized to
either the identity matrix or the projection matrix Aj =
PΦ(xj) = Φ(xj)[Φ

T (xj) Φ(xj)]
−1ΦT (xj), for every image

xj . Both of these choices for Aj matrices produce the
same similarity function s(q, xj) = ΦT (xj)Φ(q) or simply
s(q, xj) = k(xj , q) for kernel producing nonlinear function
Φ(·). However, the second choice is preferred because of its
nice geometrical properties [3].

Once the CBIR system is initialized, it may undergo
further training using the model reference (or relevance feed-
back) learning mechanism. In the following subsection, we
describe the proposed model-reference learning mechanism
and some of its features.

B. Model-Reference Learning

The goal of model-reference learning is to capture the
input-output mapping of a reference model for an ensemble
set of patterns (query images) and their corresponding labels
and desired scores. The dotted lines in Figure 1 indicate
the flow of information and the subsystems involved in the
model-reference learning. Model-reference learning may be
used to capture some specific a priori class and within-class
information shared by images in the database. To accomplish
this goal, a model-reference training database is generated
using the specific information of the images in the database
and their associated desired scores.

Given a set of L training pairs
{

qi, d
(i)
j

}L
i=1

in the model-

reference training database, where qi is the ith new pattern
and d

(i)
j is the confidence score for exemplar pattern xj ,

the goal of model-reference learning is to incorporate every
new pattern, qi, i ∈ [1, L] into either a new or an existing
category (class) or subcategory (within-class) and generate
the desired confidence score between the new pattern and
the exemplar pattern xj representing that category. Note
that the score d

(i)
j is typically defined either by a user or

some confidence assignment method. This procedure is done
by finding a new implicit mapping matrix (not explicitly
computed) Âj and the mapping function Φ(·) to yield the
desired score for the exemplar pattern. Using the proposed
generalized similarity function, the problem can be posed as
finding Âj and Φ(·) such that

ΦT (xj)ÂjΦ(qi) = d
(i)
j , i ∈ [1, L]. (2)

The problem is ill-posed because many choices for the map-
ping matrices Âj and function Φ(·) can potentially satisfy



this requirement. Furthermore, due to the high dimensionality
of Φ(·), the problem remains ill-posed even if a particular
class of functions is chosen. However, we can restrict the
choice of the basis eigenfunctions φl(·)’s to those that
generate a positive and symmetric kernel k(s, t) = k(t, s) that

satisfy Mercer’s theorem [4], then k(s, t) =
Nf∑
l=1

φl(s)φl(t) =

ΦT (s)Φ(t). Thus, the problem reduces to finding the matrix
Âj using the chosen basis functions. This problem is ill-
posed because if Âj is a solution to (2) so is Âj + Bj ,
where Φ(xj) ∈ Null(Bj), i.e. in null space of Bj . Therefore,
a solution with minimum Frobenius norm requires that
each column be a multiple of Φ(xj) leading to a rank-one
matrix Âj = Φ(xj)wTj with some weight vector wj . This
problem may be converted into a well-posed one by using
the regularized least squares (LS) [4] for finding optimal w∗j
such that

w∗j = arg min
wj

T (wj , λ) (3)

where T is the regularized LS cost function [4] given by

T (wj , λ) =
1
2
||dj − cjΨTwj ||2 +

1
2
λ||wj ||2. (4)

Here dj = [d(1)
j d

(2)
j . . . d

(L)
j ]T is the vector of desired

scores for all patterns qi, i ∈ [1, L], cj = ΦT (xj)Φ(xj) =
k(xj , xj) and Ψ = [Φ(q1) Φ(q2) . . . Φ(qL)] is the matrix
containing all the mapped patterns. The first term in (4) is
the sum squared error term induced when trying to reproduce
the scores d

(i)
j , i ∈ [1, L], while the second term is the

regularization term with λ being the regularization parameter.
The optimal solution to this regularized LS problem can
easily be found as

w∗j =
1
cj

Ψ(ΨTΨ + c−2
j λI)−1dj . (5)

As can be seen from (5), the effect of the regularization
term is equivalent to adding a diagonal loading to the L×L
Gram matrix G = ΨTΨ, which has elements that are gl,m =
k(ql, qm). The diagonal loading depends on λ and c−2

j =
1/k2(xj , xj) 6= 0 and guarantees the existence of the inverse
for matrix (ΨTΨ + c−2

j λI). Note that for symmetric, posi-
tive definite, and non-degenerate kernel functions the Gram
matrix is non-singular even without the diagonal loading
term. An example of a non-degenerate kernel is the Gaussian
kernel, which is used for the experiments performed in this
research, and is defined as k(s, t) = e−a||s−t||2 , where a is a
constant and positive real number. Thus, for non-degenerate
kernels the regularization term may be avoided.

Once the optimal solutions w∗j , j ∈ [1, N ]’s for all
the patterns in the model-reference training database are
computed the new similarity (or scoring) functions, rj(q),
for a new pattern q in (1) can easily be determined by using
the optimal vector w∗j in (5). This yields

rj(q) = ΦT (q)Ψ(ΨTΨ + c−2
j λI)−1dj

=
L∑
i=1

bjik(q, qi) = KT (q)bj (6)

where bj := (ΨTΨ + c−2
j λI)−1dj and K(q) := ΦT (q)Ψ =

[k(q, q1) . . . k(q, qL)]T .
This result implies that the new similarity function in (6)

for the model-reference learning can be implemented in the
kernel domain without the need to explicitly compute w∗j .
Note that for most kernels cj is a constant (e.g. for Gaussian
cj = 1). This implies that only one matrix inversion is needed
to compute all bj’s in (6). Additionally, there are recursive
algorithms for computing the inverse of a Gram matrix that
do not require any matrix inversion operation [3]. These
recursive algorithms could be used to yield recursive learning
equations for both the scoring function rj(q) and the weight
vector bj .

C. Implementation Using A Kernel Machine

Here it is shown how the system in Figure 1 and the as-
sociated in-situ model-reference learning mechanism can be
implemented using a simple two-layer kernel-based network
in Figure 2. This network consists of N pools of neurons,
one pool for every pattern in the original training database.
Initially, each pool is formed of only one neuron correspond-
ing to the exemplar patterns in the initial image database
X . That is, when initializing the jth pool, exemplar pattern
q1 = xj is incorporated into the pool by setting the neuron
kernel function to k(q, q1) for any input pattern q. The weight
connecting this neuron to the corresponding output neuron is
also initially set to bj1 = 1. Thus, the initial confidence score
generated by the jth pool for pattern q is rj(q) = k(q, q1),
which implements the initialization procedure mentioned in
Section II-A. Note that, if an overabundance of initial images
are a available, it may be beneficial to select a subset of
X containing images that are representative of the entire
database to use for initialization. Selection of this subset is
discussed in Section IV. Once initially setup, the model-
reference learning results in expansion of the pools and
updating the weight vector bj of the second layer.

Figure 2 shows how pool j associated with class or within-
class j is expanded by incorporating L−1 additional neurons
with kernel functions k(q, qi), i ∈ [2, L]. In essence, all pat-
terns qi’s, i ∈ [1, L], captured by pool j, are now associated
with class or within-class j represented by exemplar pattern
xj in the original training database and they form the basis for
representing the confidence scoring function rj(q) = bTj K(q)
in (6) at the output of pool j for the submitted pattern, q.
The scoring function adaptation requires updating the weight
vector bj by using the desired score information, dj , in
bj = (ΨTΨ)−1dj . In this kernel machine, a new pool of
neurons can be added without impacting the existing pools
where the newly encountered pattern will be assigned as the
exemplar pattern of this newly generated pool.

D. An Information-Theoretic Selective Sampling Method

The idea behind selective sampling, statistical active learn-
ing or experimental design [7] is to selectively search for
those most informative training samples that minimize the
generalization error and avoid over-fitting problems. An
information-theoretic approach is typically adopted to guide
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Fig. 2. A structurally adaptable kernel network for in-situ learning
implementation.

this search process. The proposed selective sampling method
also controls the expansion of the neuron pools in Figure 2
by choosing only those most informative samples during the
relevance feedback learning. The selected sample forms a
new unit in the pool with a kernel activation defined by that
pattern. This new sample brings old and new information
to the pool. While the old information (can be deduced
from the other already incorporated patterns) is not playing
a role in learning, the new information controls the weight
adjustment and scoring function adaptation in the linear
kernel space. This issue will be studied in the context of the
Fisher information matrix for sequential selection of training
samples or best basis functions.

For any new pattern qi in the set Q 1, the score generated
by the system, rj(qi) and the desired score, yj(qi), for this
pattern are related via

yj(qi) = rj(qi) + εi = bTj K(qi) + εi (7)

where εi is the error in the representation which is assumed
to have zero mean and variance σ2

i . Now, if the same set of
basis functions (determined based upon the learnt L patterns)
is to be used to minimize the generalization error on this set
Q, the best linear unbiased estimator (BLUE) [9] of bj given
L observations, qi ∈ Q, can be expressed as

b̂j = M−1
0

(
L∑
i=1

yj(qi)K(qi)/σ
2
i

)
(8)

where M0 =
L∑
i=1

1
σ2

i
K(qi)KT (qi). The Fisher Information

is a measure of the information content of the observations
relative to the model parameters. For ease of derivations, we
assume σ = σ1 = σ2 = · · · = σL. In this case, we have

M0 =
1
σ2

L∑
i=1

K(qi)KT (qi) =
1
σ2
GT0 G0 =

1
σ2
G2

0 (9)

where G0 = Ψ(0)T

Ψ(0) is the symmetric Gram matrix or the
sensitivity matrix [8] before adding the new pattern qL+1.

1The set Q could be any data set, e.g. cross-validation in the new
environment, for which the relevance information and score is known.

It can easily be shown that the error covariance matrix
for the unbiased parameter vector estimate is Cj = E[(b̂j −
E[b̂j ])(b̂j − E[b̂j ])]

T = M−1
0 , i.e. the uncertainty in the

parameter estimates on set Q is proportional to the inverse
of the Fisher information matrix (Cramer-Rao Bound). Fur-
thermore, the determinant of Cj is the smallest for BLUE
among all estimators of bj [9].

Now, having learnt L patterns in pool j we would like to
devise a sequential procedure for choosing the next sample
qL+1 ∈ Q (or basis function), which is most informative
to the pool for updating the parameters/weights. The most
informative sample introduces the least amount of parameter
uncertainties in the scoring function, hence leading to better
generalization. That is, the change in the determinant of the
covariance matrix Cj should be the minimum or equivalently
the change in the determinant of Fisher matrix should be
maximum. It is usually more convenient to work with the
logarithm of the determinant of the Fisher information ma-
trix. Let pL = logM0, then using M0 = 1

σ2G
2
0, we have

pL = logM0 = 2L log |σ|+ 2 log det(G0). (10)

Incorporating the new pattern qL+1 in the pool changes this
measure to

pL+1 = logM1 = 2(L+ 1) log |σ|+ 2 log det(G1) (11)

where M1 is the new information matrix and G1 =
Ψ(1)TΨ(1) is the Gram matrix after qL+1 is added. The
change in the information measure as a result of introducing
the new pattern qL+1 is given by

gL+1 = log det(G1)− log det(G0). (12)

Using the definition of G1, it can be shown that det(G1) =
ζdet(G0). Thus, the information change gL+1 after introduc-
ing pattern qL+1 can be simplified to

gL+1 = log |ζ| = log ‖ P⊥<Ψ(0)>Φ(qL+1) ‖2 (13)

where P⊥
<Ψ(0)>

is the orthogonal complement of the projec-

tion matrix P<Ψ(0)> = Ψ(0)(Ψ(0)TΨ(0))−1Ψ(0)T .
As can be seen, the change in the determinant of the Fisher

information matrix, gL+1, as a result of introducing a new
pattern qL+1 is dependent on the new information given by
ζ. Thus, when the new pattern carries little new information,
i.e. is somewhat redundant (small gL+1), more uncertainties
are induced to the weight vector of the associated pool and its
scoring function. This, in turn jeopardizes the generalization
ability of the system and promotes over-fitting. Additionally,
it causes more instability and unnecessary expansion of the
pool. A sequential sampling algorithm that is designed to
avoid these problems is described in Section IV.

III. DATABASE DESCRIPTION AND TEST SETUP

This section provides a brief description of the sonar image
data and the feature extraction method employed in this
study. This data consists of one training set and one testing
set. The training set is used without restriction to initialize
the network and train the system so that each pool has a high



TABLE I
OBJECTS FOUND IN THE TRAINING SET IMAGES.

Label Description Images per Background
A Box 47
B Pipe 148
C Cone 108
D Cylinder 147
E Background Only 200
F Tire 18

retrieval score for a certain type of pattern. The images in
the training set consist of snippets showing several different
types of synthetically generated objects at various ranges
and aspect angles embedded in a synthetic background.
Specifically, in the training set the image snippets contain
one of six different object types, namely: A (box), B (pipe),
C (cone), D (cylinder), E (background only), and F (tire).
Object types B, C, and D are considered targets, while object
types A, E, and F are considered nontargets. The aspect
angle for each object ranges from 0 to 360 degrees, and the
range varies from 10 m to 106 m. The background noise is
generated using the 2-D k-distribution [10] and is changed
by a parameter, ν, which takes on the values ν = -0.5, 0,
0.5, 1.0, 1.5, 2.0, 3.0, and 5.0. Smaller values of ν produce
more cluttered background. The training set contains a total
of 5144 image snippets. A description of each object type
and the number of images for each object and background
type are shown in Table I.

As with the training set, the testing set that is used to
evaluate the performance of the trained system consists of
image snippets that contain a synthetically generated object
embedded in a synthetic background. Object types in the
testing set images include A (box), D (cylinder), and C
(cone), as with the training set, but an entirely new object
type S (sphere) is also present in 1/4 of the testing images.
Furthermore, object types B (pipe) and F (tire) are not present
in the testing set. The testing image snippets were extracted
from larger images that had the objects embedded in one of
three different configurations in different backgrounds. This
means that each object type only has one of three different
shadow lengths and orientations. In particular, type A objects
(box) can have a 25◦, 45◦, or 65◦ orientation, while type D
objects (cylinder) can have a 25◦, 45◦, or 60◦ orientation.
The backgrounds for the testing images were also generated
using the 2-D k-distribution, but with ν values ranging from
-0.75 to 0.75 in increments of 0.5. The image snippets in
the testing set have significantly more cluttered backgrounds
on average when compared to the training set images. These
differences in background clutter distributions in addition to
the inclusion of the sphere object type are excellent ways to
test the system’s ability to perform in-situ learning. Overall,
there are 108 testing images for each object type, for a total
of 432 images.

The proposed CBIR system operates on 43-dimensional
feature vectors that were extracted using the contourlet
framework discussed in [10]. This method first decomposes
an image into a series of multi-resolution, multi-directional

shell images. Various statistical measures are then calculated
using each of the resulting 18 shell images, which become
the different elements of the feature vector used represent
the original image. In order to ensure that the feature vectors
were compatible with the proposed CBIR system, they were
whitened. Whitening is performed on all feature vectors
(training and testing) by using only the data from the training
set to calculate the necessary mean vector and whitening
matrix.

IV. EXPERIMENTAL RESULTS

This section presents the test results obtained by applying
the proposed CBIR system to the test image database men-
tioned in the previous section. More specifically, a network
is first initialized using a subset of the images in the training
set as exemplar patterns, and the system is then trained by
adding the rest of the images to existing pools that meet
certain criteria. The classification capability of the system
is then tested as it is trained in-situ using a portion (one
half) of the testing set. Additionally, the receiver operating
characteristic (ROC) curves of system generated after in-
situ training concludes are given. Before the results are
presented, the testing procedure is described along with
several extensions that were made to the system to allow
it to function as a classifier for objects in sonar imagery.

A. Training and Testing Procedures

Choosing the proper samples (exemplar patterns) for ini-
tializing the pools of neurons in the CBIR network can
greatly impact the performance of the system. The exemplar
patterns should be representative of the large variations in
range, orientation, and type of the objects observed within
the database. The network should also be initialized using the
same number of exemplar patterns for each object type so
that there is no bias of a particular type of image appearing
in the top images more often (i.e. considered more relevant
due to a higher retrieved score) owing to this type having
more representation. This is important for this particular
experiment due to the method used for classifying submitted
images, which discussed shortly. To facilitate this type of
initialization, k-means clustering [11] is performed on groups
of patterns representing each object type separately, with the
exception of background only images (type E), which are
excluded from the initialization and training procedures. The
patterns that are closest to the resulting 16 cluster centers
are then chosen as exemplar patterns to initialize the pools
representing that class of objects. This ensures that, for every
training feature vector of a given object type, there is at least
one similar pattern of the same type that was used to initialize
the network. In other words, the entire training feature space
for a given object type is well-represented by the exemplar
patterns, hence reducing the risk that the feature vector for
a given pattern is closer to those of exemplar patterns of
other types than those of the same type. There are 16 pools
initialized for each object type since one of them (type F)
has only 16 associated images available, and having equal



representation for all object types ensures there is no bias
for a certain type during one retrieval.

Once the CBIR network is initialized, model-reference
learning is used to train the system on the feature vectors
extracted from images in the training set. The input-output
relationships of the training samples are captured in the
model-reference database that contains the class labels of the
training samples. Although the system has access to the entire
training image database for batch model-reference training,
only one pattern is presented to the network at a time so
that the selective sampling method in Section II-D can be
used. Note that, due to the use of this selective sampling,
not all patterns are added. To adapt the network to a single
pattern, it is first submitted to the network to retrieve scores
for all the pools in the network. The subset of pools the
selected pattern may be added to is restricted to those pools
represented by an exemplar pattern that corresponds to the
same type as the selected pattern but are not in the top 16
pools (according to their retrieved scores) when the pattern
is submitted. Finally, the information content of the selected
pattern is evaluated with respect to the low-scoring pools,
and the pattern is added to those pools (with a desired score
of 0.9) that have a corresponding selective sampling measure
that exceeds a predetermined threshold.

To test the proposed CBIR system and determine its
effectiveness in a realistic environment which requires in-situ
learning, the following testing procedure is adopted. Once
learning on all data in the training set is complete, the system
is tested on the testing set and the baseline performance is
recorded. Next, one pattern is drawn randomly and blindly
(without any prior knowledge) from the testing set to acquire
its label and submit it to the network to retrieve images. This
method of selection simulates a testing environment where
a deployed system would not be able to choose an image to
use for in-situ learning, but instead would evaluate a newly
encountered one. After the image is applied, the network is
adapted with its corresponding labeled pattern, if necessary,
by using the same criteria as was used in the training phase
and the system is retested on the entire testing set. Finally,
this process is repeated until either no performance gain is
witnessed or until half the samples from the testing set have
been used to train the system in-situ.

Since a portion of the images in the testing set contain an
object type (sphere) that was not included in the initialization
and training of the system, the initially trained network
does not have any pools associated with this object type.
To accommodate this new object type (type S), a procedure
for adding new pools must be used. In this procedure, the
first randomly selected pattern that corresponds to an image
containing a sphere (or any new object type) will always
be used to initialize a new pool. Every subsequent time a
sphere pattern is selected the system evaluates the amount
of new information it would potentially add to existing type
S pools, i.e. the selective sampling measure is evaluated for
every subsequent pattern. If this measure is sufficiently high
for all the existing pools, then a new pool is added. This

process continues up until the number of added pools for
type S reaches the number of pools associated with every
other object type, i.e. 16. It must be noted that, in a practical
in-situ learning setting, there may be some new samples that
are well-represented by existing pools, and hence are easier
to classify than others that are not. Samples that are not well-
represented are likely either outliers or represent new object
types, which are two circumstances that may be difficult to
distinguish. For this reason it is highly desirable to develop
an unsupervised version of the selective sampling method
that would require an expert operator’s involvement for class
label assignment only on need basis. This is a topic for future
research.

For this study, the classification performance of the in-situ
trained CBIR system is evaluated after every in-situ training
iteration, i.e. after the network has the opportunity to be
trained on one new pattern randomly picked from the testing
set. To decide on the class label for a single pattern in the
test set using this CBIR system, the pattern is first submitted
to the trained system to obtain a retrieved score for every
pool in the network. The scores of all the retrieved images
corresponding to the target class (representing the different
target pools) are then added together and the scores of all
the retrieved images corresponding to the nontarget class are
added separately. The sum of target scores is then divided
by the number of target pools and the same is done for the
sum of the nontarget scores. This must be done since, prior
to in-situ learning, there are 48 target pools (16 each for
object types B, C, and D), while there are only 32 nontarget
pools (16 each for object types A and F). Furthermore, as
training progresses, new type S pools (nontarget) are added
to the network. This weighting of the sum of scores ensures
there is no bias for classifying the applied pattern as a target.
Finally, the weighted sum of target scores is compared to the
weighted sum of nontarget scores and a class label is assigned
to the applied pattern that corresponds to the larger score.

B. Classification Results
Figure 3 shows how the correct classification rate (ob-

tained by applying the entire testing set to the CBIR network)
changes as in-situ training progresses. As can be seen, after
starting from a low value around 0.491 corresponding to
the initially trained system, the correct classification rate
reaches a value of 0.778 after in-situ learning on only half
the samples in the testing data. The Learn++ method in
[12], which is an incremental training algorithm for neural
networks, was also implemented on the same data set. This
method was selected because of its ability to learn from
new training samples without losing much of the previously
acquired knowledge as well as its ability to accommodate
new classes that may be introduced with new training data.
However, this method was only able to achieve a correct
classification rate of 0.597 on the testing data after in-situ
learning (compared to 0.778 for the proposed CBIR system)
due to its lack of generalization ability. This classification
rate was achieved while adding 10 classifiers to the system.
Due to its significantly lower correct classification rates the



remaining results obtained with this Learn++ classifier are
omitted.

It is interesting to note that, after in-situ learning, the
CBIR system is able to correctly classify the sphere nearly
as often as other object types it was initially trained on.
This is important in light of the fact that all other objects
had a large number of patterns in the original training set.
Thus, the main cause of misclassifications on this testing set
was the fact that the testing images contained vastly more
cluttered background in general than those in the training
set. The highly cluttered backgrounds likely caused a large
shift in the feature space for the testing images, making them
difficult to classify. Figure 3 also shows that, occasionally,
the classification performance on the testing set decreases for
a period of iterations. This behavior is due to the fact that
the correct classification rate for images that the system was
not yet trained on temporarily decreased at a rate slightly
higher than the rate of increase of the correct classification
rate for the images the system was being trained on.
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Fig. 3. Correct classification rate during in-situ learning.

The classification results obtained by applying the CBIR
system to all the patterns in the testing set after each in-
situ training iteration are now presented in terms of the ROC
curves, i.e. the plot of the probability of correct classification
rate (Pcc) versus the probability of false alarm rate (Pfa) as
a decision threshold is modified. For this study, ROC curves
are generated using a procedure that is similar to the one
described in the previous subsection to assign class labels to
each applied pattern. The only modification to the procedure
is that the difference of the sum of target scores and sum
of nontarget scores is compared to a variable threshold. By
repeating this procedure for each image in the database, Pcc
and Pfa can be calculated for each threshold level.

The evaluation metrics considered here are the area under
the ROC curve (AUC) generated using the baseline network
(before in-situ learning), the asymptotic AUC value, the rate
of AUC increase during in-situ learning, and the “knee-point”
of the ROC curve (where Pcc + Pfa = 1) generated by the
system after in-situ learning. The AUC is important since
it is equal to the probability that a classifier will rank a
randomly chosen positive instance higher than a randomly

chosen negative one.
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Figure 4 shows how the AUC changes as in-situ learning
progresses. As can be seen the baseline AUC is 0.541 and
the asymptotic AUC is 0.866. Figure 5 shows the ROC curve
generated using a network that completed in-situ training on
half of the testing set, where the knee-point (marked with a
‘∗’) is at Pcc = 75.9% and Pfa = 24.1%. The results of
the ROC evaluation are consistent with those of the correct
classification rate results presented before in that the AUC
increases steadily as training progresses, eventually reaching
a satisfactory value. Note that higher correct classification
rates could have been obtained by using a larger testing set
with more representative features. The fact that the testing set
contained a new object type, different target orientations and
aspect angles, and significantly more cluttered backgrounds
all contributed to making this a very challenging classifica-
tion problem. Overall, these results demonstrate the ability
of the CBIR system to quickly learn the distribution of the
features associated with the new object type (sphere) so that
images containing them can be correctly classified without
initializing or retraining a new network or perturbing the
classification performance on other object types.
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Fig. 5. ROC curve after in-situ learning.

An important aspect of training the CBIR system is the
trade-off between obtaining a network that achieves a higher



correct classification rate and one that does not incorporate
an overabundance of samples (neurons) in each pool. Some
drawbacks of including too many samples include decreased
generalization ability and slower response time for the system
to retrieve images for a submitted pattern. This trade-off
is managed by choosing an appropriate threshold for the
selective sampling measure. In particular, if this threshold is
increased then there is an increased chance that little to no
samples will be added to a given pool, which can potentially
lead to less accurate scoring, albeit faster calculation of this
score. For this study an appropriate threshold was selected
experimentally, based on training data. Alternatively, devel-
opment and implementation of a scheme for adapting this
threshold could provide a more powerful means for managing
this trade-off.

In reference to limiting network growth, it must be noted
that, despite the fact that a fairly large image database was
used to initially train the CBIR system (5144 images total)
less than half of these images were actually added to the
network. This is due to the use of the selective sampling mea-
sure, which ensured that only the most informative samples
were added to each pool, thereby allowing the growth of the
network to be controlled while at the same time incorporating
enough samples such that acceptable classification perfor-
mance could be achieved. It is also important to note that
the drastic increase in classification performance observed
during the in-situ learning process was achieved by adding a
little more than half the available testing samples (i.e. only
1/4 of the total samples in the testing set since up to half
could be used) to the network. It was observed that lowering
the selective sampling threshold to include more samples
did not increase the overall classification performance of the
system when it was applied to the entire testing set. The
reason being while incorporating additional samples in the
network improved performance slightly on the samples that
were randomly selected to be used for in-situ learning, this
increase was offset by a decrease in performance on samples
the network was never trained on. In other words, lowering
the selective sampling measure had a negative impact on
the generalization ability of the system, and thus stymies its
ability to perform well in real mine-hunting scenarios.

V. CONCLUSIONS

This paper discussed a CBIR system used as a classifier for
sonar imagery that has the ability to learn the patterns of new
objects and adapt to new environmental and operating con-
ditions in-situ by modifying a set of similarity functions in
the kernel domain. Learning is implemented using a model-
reference mechanism that captures the class and within-
class information shared by images in a training database. A
structurally dynamic two-layer network is used to implement
the retrieval and classification. As learning progresses, pools
that receive feedback expand in order to perform similarity
function adaptation. To control the expansion of the pools
during learning and provide better generalization ability
an information-theoretic method was incorporated that only
allows the most informative images to be introduced into

the pools. The proposed system was then applied to a
sonar image classification problem where performance was
measured during the in-situ learning process. It was observed
that the performance of the system improved dramatically
during in-situ learning not only for known object types in
different environments, but also for a new object type not
used during the initial training. This new object type was
incorporated into the system without perturbing the classifi-
cation performance of the system on existing object types.
This increase in classification performance was obtained
while at the same time using the selective sampling feature
of the system to limit network growth, hence preserving the
network’s generalization ability.

ACKNOWLEDGMENT

This work was supported by the Office of Naval Research,
Small Business Innovative Research Phase I Program under
contract #091-066

REFERENCES

[1] G. J. Dobeck, J. Hyland and L. Smedley, “Automated detec-
tion/classification of sea mines in sonar imagery”, Proc. SPIE, vol.
3079, pp. 90-110, April 1997.

[2] C. Ciany and J. Huang, “Data fusion of VSW CAD/CAC algorithms”,
Proc. SPIE, vol. 4038, pp. 413-420, April, 2000.

[3] M.R. Azimi-Sadjadi, J. Salazar, and S. Srinivasan, “An adaptable
image retrieval system with relevance feedback using kernel machines
and selective sampling”, IEEE Trans. on Image Processing, vol. 18,
No. 7, pp. 1645-1659, July 2009.

[4] B. Scholkopf and S. Smola, Learning with kernels, The MIT press,
2002.

[5] N. Vasconcelos and A. Lippman, “A Bayesian framework for content-
based indexing and retrieval,” Proc. Data Compression Conf., pp. 580,
1998.

[6] P. Muneesawang and L. Guan, “An interactive approach for CBIR
using a network of radial basis functions,” IEEE Trans. Multimedia,
vol. 6, no. 10, pp. 703716, Oct. 2004.

[7] E. Dura, Y. Zhang, X. Liao, G.J. Dobeck and L. Carin, “Active learning
for detection of mine-like objects in side-scan sonar imagery”, IEEE
Journal of Oceanic Engr., vol. 30, no. 2, pp. 360-371, April 2005.

[8] L.L. Scharf and L. T. McWhorter, “Geometry of the Cramer-Rao
bound”, Signal Processing, vol. 31, no. 3, pp. 301-311, April 1993.

[9] V. V. Fedorov, Theory of optimal experiments, Academic Press, Inc,
1972.

[10] J.-E.Wilbur, R.J. McDonald, and J. Stack, “Contourlet detection and
feature extraction for automatic target recognition”, IEEE International
Conf. on Systems, Man and Cybernetics, pp. 2734-2738, Oct 2009.

[11] D. MacKay, “Chapter 20. An example inference task: clustering”,
Information Theory, Inference and Learning Algorithms, Cambridge
University Press.

[12] R. Polikar, L. Udpa, and S. Udpa, “Learn++: an incremental learning
algorithm for supervised neural networks”, IEEE Trans. on Systems,
Man, and Cybernetics, vol. 31, pp. 497-508, November 2001.


