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Wideband DOA Estimation Algorithms for Multiple
Moving Sources using Unattended Acoustic Sensors

The problem of direction of arrival (DOA) estimation for

multiple wideband sources using unattended passive acoustic

sensors is considered. Several existing methods for narrowband

DOA estimation are extended to resolve multiple closely spaced

sources in presence of interference and wind noise. New wideband

Capon beamforming methods are developed that use various

algorithms for combining the narrowband power spectra at

different frequency bins. A robust wideband Capon method

is also studied to account for the inherent uncertainties in the

array steering vector. Finally, to improve the resolution within

an angular sector of interest and to provide robustness to sensor

data loss, the beamspace method is extended and applied to the

wideband problems. These methods are tested and benchmarked

on two real acoustic signature data sets that contain multiple

ground vehicles.

I. INTRODUCTION

The problem of detection, and localization of
multiple ground targets using unattended acoustic
sensors is complicated due to various factors. These
include: variability and nonstationarity of source
acoustic signatures, signal attenuation and fading
effects as a function of range and Doppler, coherence
loss due to environmental conditions and wind effects,
near field and nonplane wave effects, and high level
of acoustic clutter and interference. In addition,
presence of multiple closely spaced targets that
move in tight formations, e.g. staggered, abreast or
single-file, further complicates the direction of arrival
(DOA) estimation, data association, and localization
processes. Clearly, optimum performance for detection
and localization of multiple acoustic sources is
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highly dependent on terrain, weather, and background
noise.
To date, several wideband DOA estimation

algorithms [1—3] for resolving moving ground
targets from their acoustic signatures have been
developed. These algorithms mainly involve sensor
array processing that apply to baseline or regular
(e.g. linear or circular) array geometries. Wideband
extensions (coherent and incoherent) of the MUSIC
(multiple signal classification) algorithm [4] are
among the techniques that have shown promise
for resolving multiple moving ground vehicles. In
particular, the advantage of wideband MUSIC over
the delay-sum algorithm was demonstrated in [2],
via experimental results obtained from a circular
array of six sensors, with a diameter of 8 ft. In [3],
several wideband DOA estimation methods including
steered covariance matrix (STCM) [5, 6] and spatial
smoothing or array manifold interpolation [5] have
been employed for DOA tracking of ground vehicles.
In addition, experimental analysis of DOA estimation
accuracy of the incoherent and coherent wideband
MUSIC algorithms have been provided. The results
presented in [3] indicate that incoherent wideband
methods yield more accurate DOA estimates for
highly peaked spectra while for sources with flat
spectra the coherent wideband methods generate more
accurate DOA estimates.
In [7], an algorithm for DOA tracking of multiple

ground vehicles which move in a single-file convoy
is developed. The proposed algorithm uses a
template for the DOA track of the leading vehicle
to generate DOA tracks for the remaining vehicles.
DOA estimates are generated using the incoherent
wideband MUSIC. This method also utilizes the
differential estimates in vehicles’ speeds to obtain
more accurate DOA estimates for each vehicle
in the convoy. Heuristic rules are used to build
the templates of the leading and trailing vehicles.
The work in [8] uses an adaptive beamforming
algorithm at a fixed look angle with enhanced
directivity and reduced sidelobes. Using this algorithm
the number of targets in a convoy can also be
determined.
More recently, a study was carried out [9] to

benchmark different wideband DOA estimation
algorithms. Among the methods carefully studied
were the STCM [6] and the weighted subspace
fitting (WSF) [4, 10]. The STCM typically uses
a diagonal focusing matrix, which can resolve a
group of sources only if all the DOAs are within one
beamwidth of the focusing angle. Other choices of the
focusing matrix [11] were also found to be incapable
of providing accurate DOA estimates of multiple
closely spaced sources. The WSF method requires a
multi-dimensional search for determining the DOAs,
and hence is computationally inefficient for practical
use.

This paper presents three new wideband DOA
estimation algorithms for resolving ground vehicles
moving in tight formations. These algorithms are
based on wideband extensions of the narrowband
Capon beamformer [4]. The proposed methods exploit
the arithmetic mean, geometric mean, and harmonic
mean of the output angular power of narrowband
Capon beamformers at different frequency bins for
wideband DOA estimation. The proposed algorithms
are combined with the robust Capon beamformer
presented in [12] to improve the robustness of
the DOA estimates with respect to steering vector
errors and wavefront perturbations. The beamspace
method [4] is also integrated with the wideband
Capon methods in order to further enhance the DOA
estimation resolution and provide robustness to sensor
loss. An analysis of the bearing response patterns
of wideband Capon beamformers is performed to
investigate the ability of these beamformers to resolve
multiple closely spaced sources. These algorithms are
then tested and benchmarked on two real acoustic
signature data sets. The first data set was collected
using baseline circular arrays of five microphones
and contains acoustic signatures of multiple light or
heavy, wheeled or tracked vehicles. This data set is
used to demonstrate the usefulness of the proposed
methods for resolving multiple closely spaced targets.
The second data set was collected using distributed
wireless acoustic sensors and contains acoustic
signatures of one or two light wheeled vehicles. This
data set is used to show the promise of the wideband
beamspace method in presence of sensor failures.

II. WIDEBAND SIGNAL MODEL

Consider an array of M sensors that receive the
wavefield emanated from d wideband sources in
presence of noise. The array geometry is arbitrary
but known to the processor. The source signal vector
s(t) = [s1(t),s2(t), : : : ,sd(t)]

T is assumed to be zero
mean and stationary over the observation interval
T0. The source spectral density matrix is denoted
by Ps(f), f 2 [fc¡BW=2,fc+BW=2], where the
bandwidth BW is comparable to center frequency
fc. The spectral density matrix Ps(f) is a d£ d
nonnegative Hermitian matrix, which is unknown to
the processor. The noise wavefield is assumed to be
independent of the source signals, with M £M noise
spectral density matrix Pn(f). The spectral density
matrix Px(f) of the M-dimensional array output vector
x(t) can be expressed as

Px(f) = A(f,Á)Ps(f)A
H(f,Á) +Pn(f) (1)

where A(f,Á) = [a(f,Á1),a(f,Á2), : : : ,a(f,Ád)] is
the M £ d array steering matrix of the sensor array,
a(f,Ái) is the steering vector for the ith source with
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DOA Ái, and Á= [Á1, : : : ,Ád]
T. It is assumed that

M > d and that the rank of A(f,Á) is equal to d at
any frequency. The structure of the steering vector
a(f,Á) changes with the geometry of the array. For
a wagon-wheel circular array with five elements, the
array steering vector is

a(fj ,Á) =

[e¡j(2¼fr=c)cosÁ,e¡j(2¼fr=c)sinÁ,1,ej(2¼fr=c)cosÁ,ej(2¼fr=c)sinÁ]T

(2)

where r is the radius of the array and c is the speed
of sound in air. Here the elements are numbered as
1:East, 2:South, 3:Center, 4:West and 5:North. The
DOA is measured wrt North.
The array output vector x(t) is first decomposed

into narrowband components by taking discrete
Fourier transform (DFT) over nonoverlapping time
segments of length ¢T. That is, the array output
x(t), observed over T0 seconds, is sectioned into K
windows of duration ¢T seconds each. We denote the
vector consisting of the jth narrowband components
of the independent array measurements at the kth
snapshot by xk(fj), k = 1,2, : : : ,K, and j = 1,2, : : : ,J ,
and we assume that the narrowband components at
different frequency bins are independent. The goal is
to determine the number of sources d and estimate
the angles Ái, i= 1,2, : : : ,d from the data xk(fj),
k = 1,2, : : : ,K; j = 1,2, : : : ,J .
The spatial covariance matrix for the jth

narrowband component xk(fj) is

Rxx(fj)¼ Px(fj) = A(fj ,Á)Ps(fj)AH(fj ,Á) +Pn(fj),
j = 1,2, : : : ,J (3)

The spatial covariance Rxx(fj) can be approximated
from snapshot vectors xk(fj) by averaging across
multiple snapshots, i.e.,

Rxx(fj) =
1
K

KX
k=1

xk(fj)x
H
k (fj): (4)

III. WIDEBAND CAPON DOA ESTIMATION
METHODS

Several coherent [3, 5, 6, 11] and incoherent
[2, 9, 13] wideband DOA estimation algorithms exist
that differ in the manner they combine narrowband
spectra to provide DOA estimates over a desired
frequency range. In coherent frequency combining
methods (such as STCM) the narrowband spatial
covariance matrices are first focused into a single
reference frequency. The focusing process converts
the wideband DOA estimation into a narrowband
problem where any of the standard narrowband
methods may be used to estimate the DOAs. Various
weighting schemes [6, 11] can be used to coherently

combine the narrowband components. The choice
of the focusing matrix has a major impact on the
performance of the coherent frequency combining
methods. Typically, a diagonal focusing matrix [6, 11]
is employed, which can only detect the DOA of a
group of closely spaced sources. The spectral content
of acoustic signatures of ground vehicles exhibit
peaky behavior at certain frequencies where target
indications exist, and as a result coherent averaging
(particularly in presence of wideband interference) can
have detrimental effects on the performance.
In incoherent frequency combining, the spatial

covariance matrices are used individually at every
frequency to yield separate narrowband responses.
Different averaging methods, e.g. arithmetic,
harmonic, and geometric averaging, can be employed
to incoherently combine the narrowband responses
(e.g. see [9]). In the following subsections we
introduce different incoherent wideband Capon DOA
estimation methods and comment on the advantages
and disadvantages of each method.

A. Arithmetic Averaging

In wideband arithmetic Capon beamforming,
the goal is to minimize the total output power
(across different frequencies) of a set of narrowband
beamformers c(fj ,μ), j = 1, : : : ,J , while enforcing a
set of narrowband distortionless response constraints
cH(fj ,μ)a(fj ,μ) = 1, j = 1, : : : ,J . The problem can be
mathematically posed as

min
c(f

j
,μ)
QA(μ) =

JX
j=1

cH(fj ,μ)Rxx(fj)c(fj ,μ) (5)

under the constraints

cH(fj ,μ)a(fj ,μ) = 1, 8 j 2 [1,J]: (6)

This minimization problem can be easily solved
using the method of Lagrange multipliers. The
minimizers c(fj ,μ), j = 1, : : : ,J are narrowband Capon
beamformers [4] given by

c(fj ,μ) =
R¡1xx (fj)a(fj ,μ)

aH(fj ,μ)R
¡1
xx (fj)a(fj ,μ)

, 8 j 2 [1,J]:
(7)

The wideband Capon spectrum is given by

QA(μ) =
JX
j=1

q(fj ,μ) =
JX
j=1

1

aH(fj ,μ)R
¡1
xx (fj)a(fj ,μ)

(8)where

q(fj ,μ) =
1

aH(fj ,μ)R
¡1
xx (fj)a(fj ,μ)

, j = 1, : : : ,J

(9)
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are the output powers of the narrowband Capon
beamformers c(fj ,μ). It is now clear that the wideband
Capon spectrum can be formed by an arithmetic
average of the narrowband Capon spectra q(fj ,μ),
j = 1, : : : ,J across different frequency bins.

B. Geometric Averaging

For the wideband geometric Capon beamforming,
we minimize the following objective function

QG(μ) =
JY
j=1

cH(fj ,μ)Rxx(fj)c(fj ,μ) (10)

with respect to c(fj ,μ), j = 1, : : : ,J under the
distortionless constraints in (6). The minimizers are
again the narrowband Capon beamformers given by
(7). Consequently, the wideband Capon spectrum
QG(μ) is given by

QG(μ) =
JY
j=1

q(fj ,μ) =
JY
j=1

1

aH(fj ,μ)R
¡1
xx (fj)a(fj ,μ)

(11)

which is the geometric mean of the narrowband
Capon spectra across different frequency bins.

C. Harmonic Averaging

Finally, for the harmonically averaged wideband
Capon spectrum we have

QH(μ) =
1PJ

j=1 1=q(fj ,μ)
=

1PJ

j=1 a
H(fj ,μ)R

¡1
xx (fj)a(fj ,μ)

:

(12)

Similar to the narrowband case where the DOAs
are obtained by searching for the peaks of the Capon
spectrum q(fj ,μ) across μ, in the wideband case the
locations of the peaks of QA(μ) or QG(μ), or QH(μ)
are taken as the estimate of the DOAs. A prespecified
number of peaks can be chosen based on whether or
not they reach a threshold which is dependent on the
value of the largest peak. The locations of these peaks
are the DOA estimates.

D. Wideband Robust Capon Beamformer

In many situations the steering vectors a(fj ,μ)
are not perfectly known, due to factors such as near
field effects, random perturbations in the medium, and
uncertainty about the sensor locations. Differences
between the presumed steering vectors and the actual
ones result in signal suppression and poor interference
rejection by the Capon beamformer (e.g. see [14],
[16]). Several methods have been reported to make
the Capon beamformer robust to such effects. A few

examples are: the robust adaptive beamformer of
[17], which enforces a white noise gain constraint;
robust adaptive beamformer in [12], which considers
an ellipsoidal uncertainty for the steering vector;
and the robust adaptive beamformer of [18] which
optimizes worst case performance for a bounded norm
distortion in the steering vector. The reader is referred
to [19] for a comprehensive review of the relevant
literature.
Our aim in this section is to extend the robust

Capon beamforming strategy of [12] for the wideband
case. The robust Capon beamforming method in [12]
considers an ellipsoidal uncertainty constraint for
the steering vector. This method provides a simple
way of eliminating the scaling ambiguity. In addition
to its good interference cancelation property and
robustness to small mismatch in the signal model, it
maintains a wide mainlobe for receiving the desired
signal.
In [12], it is shown that robust Capon

beamforming with ellipsoidal uncertainty constraint
is equivalent to solving the following optimization
problem under a spherical constraint, i.e.,

min
a
aH(fj ,μ)R

¡1
xx (fj)a(fj ,μ) s.t. ka¡ āk2 · ²

(13)

where ā(fj ,μ) is the assumed steering vector and
² is the error bound. The minimization problem
leads to a Capon beamformer with a diagonally
loaded covariance matrix. The algorithm requires
a 1-D search to find the optimum diagonal loading
value at each look direction. The steps for the
wideband extension of this algorithm are given
below.

1) Compute the singular value decomposition
(SVD) of Rxx(fj). That is, Rxx(fj) = E(fj)¤(fj)E

H(fj),
where ¤(fj) = Diag[¸1, : : : ,¸M] contains the
eigenvalues with ¸1 ¸ ¸2 ¸ ¢¢ ¢ ¸ ¸M and E(fj) is the
matrix of all the eigenvectors.
2) Solve for the minimizer of

g(°j) =
MX
m=1

jzm(fj)j2
(1+ °j¸m)2

(14)

using a 1-D search method (e.g. the Newton’s
method) and get g(°j) as close to ² as possible. Here
°j is the diagonal loading factor for frequency fj , and
zm(fj) is the mth element of z(fj) = E

H(fj)ā(fj ,μ).
3) Compute QG(μ) in (11) for the geometrically

averaged output power by replacing a(fj ,μ) by

ã(fj ,μ) = ā(fj ,μ)¡E(fj)(I+ °j¤(fj))¡1EH(fj)ā(fj ,μ):
(15)
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This yields the geometrically averaged robust Capon
beamformer in (16)

QGRobust (μ) =
JY
j=1

1

āH(fj ,μ)E(fj)¤(fj)[°
¡2
j I+2°

¡1
j ¤(fj) +¤

2(fj)]¡1E
H(fj)ā(fj ,μ)

: (16)

It is important to note that in addition to a 1-D
search, robust wideband Capon beamforming requires
an eigen-decomposition of an M £M Hermitian
matrix Rxx(fj), which has computational complexity
O(M3).

IV. WIDEBAND BEAMSPACE METHOD

The beamspace method reduces the computational
complexity and degrees of freedom in an array by
steering a group of beams instead of the phasings of
the individual sensors [4]. The M £Mbs beamspace
matrix Bbs is a projection matrix from the element
space (in CM) to the beamspace (in CMbs) where
M ¸Mbs. Finding a covariance with respect to these
beams instead of the elements focuses the region of
interest (or region of active interference cancellation)
and attenuates signals outside this region. The
computational complexity is also reduced as the size
of the covariance matrix reduces from M £M to
Mbs£Mbs.
Beamspace method projects the input data vector

onto a low dimensional subspace where the signal
of interest is extracted easier. This projection cancels
signals outside the filtering region of interest, hence
acting as a spatial bandpass filter.
In the full-dimensional beamspace, the outputs

of the M-element standard array are processed to
produce M orthogonal beams. The center beam is
typically a conventional (Bartlett window) beam
pointed at the look direction, which is called the main
response axis (MRA). It is important that the beams
are orthogonal, since this ensures that any signal
arriving along the mainlobe of a particular beam
will not produce output from any other beam. The
M £Mbs matrix Bbs, (Mbs =M for the full-dimensional
beamspace), is formed with the steering vectors
of each beam, which is called the beamfan. To
implement the beamspace method, a beamfan is
formed of Mbs beams and the MRA is steered to
the corresponding look direction. The beamfan
is moved through all angles. A general form of a
nonorthogonalized beamspace matrix is

Bno(fj ,μ) = [b(fj ,Á¡P + μ) ¢ ¢ ¢b(fj ,Á0 + μ) ¢ ¢ ¢b(fj ,ÁP + μ)]

(17)

where

b(fj ,Áp) =

266664
ej2¼fjr=c(®0 cos(Áp)+¯0 sin(Áp))

ej2¼fjr=c(®1 cos(Áp)+¯1 sin(Áp))

...

ej2¼fjr=c(®M¡1 cos(Áp)+¯M¡1 sin(Áp))

377775 (18)

and Áp, p=¡P, : : : ,0, : : : ,P are the angles of beams
b(fj ,Áp) in the beamspace matrix measured relative to
the x-axis and ®i and ¯i are the horizontal and vertical
coordinates of the ith sensor relative to the reference
position. To ensure orthogonality of the beamspace
matrix, we perform

Bbs =Bno[B
H
noBno]

¡1=2 (19)

to get BHbsBbs = IM
bs
. The received data is then

processed using the beamspace matrix Bbs prior to
beamforming.
The processing steps in the wideband beamspace

method are listed below.

1) Transform the array output vector, xk(fj),
k = 1,2, : : : ,K using

vk(fj ,μ) = B
H
bs(fj ,μ)xk(fj) (20)

where Bbs(fj ,μ) is the M £Mbs beamspace matrix
whose columns are the orthogonal steering vectors
centered around μ at frequency fj . The resulting
sample covariance matrix of the transformed array
output, vk(fj) is

Rvv(fj ,μ) = B
H
bs(fj ,μ)Rxx(fj)Bbs(fj ,μ)

¼ BHbs(fj ,μ)A(fj ,Á)Ps(fj)AH(fj ,Á)Bbs(fj ,μ)
+BHbs(fj ,μ)Pn(fj)Bbs(fj ,μ) (21)

where A(fj ,Á), Ps(fj), and Pn(fj) were defined in
Section II.
2) The transformed steering vector is given as

abs(fj ,μ) = B
H
bs(fj ,μ)a(fj ,μ) (22)

and the beamformer output becomes

zk(fj ,μ) = c
H
bs(fj ,μ)vk(fj) (23)

where cbs(fj ,μ) is

cbs(fj ,μ) =
R¡1vv (fj ,μ)abs(fj ,μ)

aHbs(fj ,μ)R
¡1
vv (fj ,μ)abs(fj ,μ)

: (24)
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3) The wideband geometric beamspace spectrum
then becomes

QG
bs
(μ) =

JY
j=1

1

aHbs(fj ,μ)R
¡1
vv (fj ,μ)abs(fj ,μ)

: (25)

The beamspace method, requires additional
computation mostly due to the whitening of the
beamspace matrix for each look direction and
frequency bin. This can be avoided for the beamspace
Capon beamformer by using (19), (21), and (22)
in (25) and simplifying the result. This yields a
beamspace Capon beamformer that does not need
orthogonalization,

QG
bs
(μ) =

JY
j=1

1
aH(fj ,μ)Bno(fj ,μ)(B

H
no(fj ,μ)Rxx(fj)Bno(fj ,μ))¡1B

H
no(fj ,μ)a(fj ,μ)

: (26)

V. BEARING RESPONSE ANALYSIS

Next, we study the bearing response patterns
(output power as a function of look angle μ) for
the STCM algorithm [5], the arithmetic, geometric,
and harmonic wideband Capon beamformers,
the wideband robust Capon beamformer, and the
wideband beamspace method.
We consider two uncorrelated sources with unit

power at angles Á1 and Á2, incident on a five-element
wagon wheel array with 2 ft radius. The covariance
matrix for the jth narrowband component has rank-2
and is given by

Rxx(fj) = [a(fj ,Á1) a(fj ,Á2)][a(fj ,Á1) a(fj ,Á2)]
H:

(27)

Noise effects with SNR= 20 dB are added to this
matrix. We study the resolution of the beamformers
mentioned above by analyzing their bearing response
pattern for three different angular spacings between
the sources: 20±, 23±, and 26±. The set of frequencies
used is 50 to 250 Hz with increments of 2 Hz. The
reason for using these frequencies is that the aliasing
frequency for the wagon-wheel array, is approximately
277 Hz [8], and the useful frequencies of the ground
sources lie in this region.
Figs. 1(a)—(f) show the bearing response patterns

of the wideband arithmetic mean Capon, geometric
mean Capon, harmonic mean Capon, STCM,
robust Capon, and beamspace Capon beamformers,
respectively. These correspond to the plots of QA
(arithmetic), QG (geometric), QH (harmonic), STCM
[5], QGrobust (robust Capon), and QGbs (beamspace
Capon) with respect to look angle μ. Comparing the
first four methods, several interesting observations can
be made. It can easily be seen from these plots that

the width of the mainlobe of the wideband geometric
mean is much narrower with a much lower sidelobe
(where no source is present) response than the other
wideband Capon methods. This is due to the fact
that the geometric mean is based upon the product
operation where the lower frequencies eliminate any
sidelobes, while the higher frequencies narrow the
beamwidth and hence giving better overall resolution.
On the other hand, the wideband arithmetic and
harmonic mean Capon methods exhibit sidelobes
that are not observable over the range of angles in
Figs. 1(a) and (c). Furthermore, for these methods
the resolution does not improve greatly at higher
frequencies.

The bearing response of the STCM exhibits a
similar mainlobe structure to those of the arithmetic
and harmonic mean Capon methods while its
sidelobes attenuate more slowly. As can be seen
from Fig. 1(e), the wideband robust Capon has
problems resolving closely spaced sources when
compared with the geometric mean Capon in
Fig. 1(b). The beamwidth is dependent on the
choice of the diagonal loading parameter in this
algorithm, which in turn is determined by the
choice of the error bound (²) [12]. The wideband
beamspace Capon beamformer used three beams
at ¡6±, 0±, and 6± from the look direction. The
improvement of the wideband beamspace over the
geometric averaged Capon is not noticeable in the
bearing responses of Figs. 1(b) and (f), though it
indeed acts as a spatial bandpass filter for noise
and interference. This advantage of the beamspace
Capon algorithm is demonstrated on real data in
Section VI.

VI. WIDEBAND DOA ESTIMATION RESULTS

A. Baseline Circular Arrays

In this section, the wideband DOA estimation
algorithms developed in this paper are applied to the
data of two runs collected using three (nodes 1—3)
5-element wagon-wheel circular arrays each with
2 ft radius. The collected data had to be calibrated
prior to DOA estimation using a calibration data
set in order to account for the inherent errors
between the ideal values of the array parameters,
namely microphone gain and phase as well as sensor
positions, and the actual values of these parameters
for the deployed arrays. The time series recorded
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Fig. 1. Bearing responses on 5-element circular array for two sources with separations 20±, 23±, 26±. (a) Arithmetic mean Capon. (b)
Geometric mean Capon. (c) Harmonic mean Capon. (d) STCM. (e) Geometric mean robust Capon (with error, "= 0:71). (f) Geometric

mean beamspace Capon. Vertical lines are actual locations of sources.

by each microphone (sampled at fs = 1024 Hz) was
first windowed using a sliding Hamming window
of size 2048 that corresponds to 2 sec of data. The
overlap between consecutive windows was 1024
sample. The gain/phase calibration process was then
performed in the frequency domain in the range of
50—250 Hz using the calibration data set. Due to the
overlapping windows the DOA estimation generates
DOAs every second. In all the following studies,
the beamspace Capon used 3 beams spaced at ¡6±,
0±, and 6± from the look direction. Moreover, the

wideband robust Capon beamformer was applied to
the uncalibrated data to show the advantages over the
wideband geometric Capon method.
1) Results on Run 1: This run contains six

vehicles that move in three separate groups. The first
group contains a single light wheeled vehicle which
started from 1.5 km away, came to 50 m (closest point
of approach (CPA)) in the middle of the run, and then
moved away to a distance of 2 km from node 1. The
second group was formed of a single-file convoy of
three heavy tracked vehicles that moved from 2.2 km
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Fig. 2. Vehicle paths on road relative to node positions in run 1.

up to 50 m CPA from the array and moved away
to 1.5 km. Lastly, the third group was formed of a
single-file convoy of two heavy wheeled vehicles
which moved from 3 km into 50 m CPA and then
moved away from the array to 0.8 km. The path the
vehicles followed relative to the array nodes is shown
in Fig. 2. Note that due to page limitations only the
results obtained from data for node 1 are presented.
Figs. 3(a)—(e) show the DOA estimation results

on the calibrated data for run 1 obtained using
the wideband arithmetic Capon, geometric Capon,
harmonic Capon, STCM, and beamspace Capon
algorithms, respectively. The frequency bin separation
was 2 Hz. Solid lines correspond to the actual (true)
angles obtained from a truth file. The points marked
by “¤,” “4,” and “£” are the DOA estimates obtained
from the first, second, and third strongest peaks
in the Capon spectrum, respectively. Comparison
of DOA tracks obtained using different algorithms
indicates that, among the wideband Capon methods,
the geometric and harmonic Capon provide good
overall results on run 1 data, with DOA estimates that
are close to the actual DOAs. Similar observation was
made with other baseline array data sets.
By looking at the DOA estimates and also the

range of the vehicles from the array, one can see that
the vehicles are accurately resolved even at far ranges
(> 2 km). It is interesting to note that although Capon
beamforming generally loses its accuracy in presence
of near field effects, the DOAs of the vehicles are
successfully resolved even when they are near the
CPA to the array. It must be mentioned that in some
scenarios where both light and heavy vehicles are
present together in a run, the dominant source
will obscure the weaker source, especially at far
ranges.
The arithmetic wideband Capon and the STCM

provide acceptable results (Figs. 3(a) and 3(d)), but
their DOA estimates are not as accurate as those of
the geometric and harmonic Capon beamformers.
As can be seen, the geometric and harmonic Capon

algorithms have successfully estimated the DOAs
of all the groups, even for the light wheeled vehicle
at very far range. In particular, the DOA estimates
obtained by the geometric and harmonic Capon
beamformers for multiple targets between between
150—210 sec and 224—334 sec are very close to
the true DOAs. These algorithms are also able to
resolve the DOAs of the heavy tracked and wheeled
convoy of vehicles moving in single-file groups of
three (middle) and two (right hand side) vehicles,
respectively. The STCM algorithm on the other
hand fails to resolve multiple targets that move in
groups, mainly due to its wide beamwidth as shown
in Fig. 1(d). Additionally, it fails to provide accurate
DOA estimates for the group of three heavy tracked
targets as they move away from the array.
The DOA estimation results for the beamspace

geometric Capon are shown in Fig. 3(e). Comparing
the DOA estimates in the first 110 sec with those
obtained by the wideband geometric mean Capon
(Fig. 3(b)), we notice that the DOA accuracy has
improved, especially when the vehicles are at far
range (1.5—2 km). To be more specific, the DOA
error during this time segment has reduced from
approximately 10± for the wideband geometric
mean Capon to less than 5± for the beamspace
geometric Capon. This benefit of the beamspace
method over the wideband geometric Capon is due
to the inherent spatial filtering used in this method.
The improvements and benefits of the wideband
beamspace Capon method become even more
prominent when there are fewer frequency bins to
average over, or when the number of samples used
to create the covariance matrix is small. In these cases,
the beamspace Capon generates better DOA estimates
with lower variability due to the inherent robustness
to a small number of samples. This property of
the beamspace method is a direct consequence of
dimension reduction.
To show the sensitivity of the original Capon

to phase/gain errors caused by uncertainties in the
exact microphone locations and to demonstrate
the usefulness of the wideband robust Capon in
these cases, the uncalibrated data of run 1 is used.
The frequency bin resolution is 4 Hz in this case.
The value of the assumed steering vector error is
chosen to be ²= 0:7. The DOA estimation results
of the wideband robust Capon method are shown in
Fig. 4(a). Compared with the results of the wideband
geometric Capon in Fig. 4(b), the wideband robust
geometric Capon provides more accurate DOA
estimates. This is especially evident when the targets
are near the CPA, i.e., 160—320 s time segment, as can
be seen in Figs. 4(c) and (d). This is attributed to the
fact that near the CPA, signal mismatch effects due to
sensor location errors are compounded by near field
effects.
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Fig. 3. DOA estimates for run 1 obtained using arithmetic, geometric, harmonic mean wideband Capon. STCM, beamspace Capon
algorithms. (a) Arithmetic. (b) Geometric. (c) Harmonic. (d) STCM. (e) Beamspace Capon.

2) Results on a Single Target Run 2–Accuracy
Analysis: To further benchmark the developed
wideband DOA estimation algorithms in terms of
DOA estimation accuracy an error analysis is carried
out on a single target run. This particular run contains
a heavy wheeled vehicle that moves from 1.5 km
away to 50 m CPA at approximately 150 s, and then
goes away from the array to about 0.75 km. Fig. 5

shows the path of this vehicle on the road relative to
array locations.
Figs. 6(a)—(e) show the DOA estimation

results on this single-target run obtained using
the arithmetic mean Capon, the geometric mean
Capon, the harmonic mean Capon, STCM, and the
geometric beamspace Capon algorithms, respectively.
DOA estimates obtained by using a conventional
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Fig. 4. DOA estimates of wideband robust Capon ("= 1:5) and geometric mean Capon. For uncalibrated data of run 1, (a) and (b).
Near field DOA estimation performance, (c) and (d).

Fourier-based (Bartlett) beamformer [4] are also
provided for comparison. Fig. 6(f) shows that
the large sidelobes of the conventional Fourier
beamformer cause many erroneous DOA estimates.
The distributions of the DOA errors are shown in
Fig. 7. The mean and variance of the error are also
given in Table I. As evident from these results, the
beamspace Capon algorithm provided the most
accurate (smallest variance) DOA estimates. The
improved accuracy is due, in part, to the spatial
filtering property of the beamspace method.

B. Randomly Distributed Arrays

To show some additional promising properties of
the beamspace Capon algorithm a separate study is
carried out using random distributed wireless sensors.
Distributed sensor arrays offer numerous benefits
compared with arrays with regular geometries.
These include: simplicity and ease in deployment,
stealthy operation, larger coverage area, better spatial
resolution for separating multiple closely spaced
targets, lower hardware complexity and cost, etc. We
have recently shown [20] that distributed sensor arrays

Fig. 5. Vehicle paths on road relative to node positions–run 2.

offer much better robustness to sensor position errors,
transmission loss effects, and other perturbations.
This is primarily due to random sidelobe structure
in contrast to the regular sidelobe structure of the
baseline wagon-wheel arrays. To see this, let us
consider the sensor array configuration in Fig. 8(b),
consisting of fifteen randomly distributed sensors.
Figs. 9(a) and (b) show the theoretical bearing
response patterns of the wideband geometric
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Fig. 6. DOA estimates for run 2, a single target case, obtained using arithmetic, geometric, harmonic mean wideband Capon, STCM,
beamspace Capon, conventional beamforming algorithms. (a) Arithmetic Capon. (b) Geometric Capon. (c) Harmonic Capon. (d) STCM.

(e) Beamspace Capon. (f) Conventional.

Capon and the wideband beamspace Capon,
respectively. The frequency resolution in this study
was 8 Hz and the SNR was 20 dB (similar to the
baseline case). As expected the bearing response
patterns for the randomly distributed arrays exhibit
better resolution for separating closely spaced (2 deg
separation) sources with no regular sidelobe structure
compared to those in Figs. 1(b) and (f) for the

baseline array. Nonetheless, in distributed sensor
arrays sensor failures and/or packet losses commonly
occur, causing incorrect DOA estimation and target
localization. We show that the wideband geometric
beamspace method is robust with respect to such
failures.
Data sets have been collected using two wireless

sensor array configurations in Figs. 8(a) and (b).
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TABLE I
DOA Error Statistics for Various Wideband Beamforming Algorithms

Beamspace Geometric Arithmetic STCM Harmonic Conventional

Mean Error (deg) ¡1:5685 ¡2:1239 ¡2:201 ¡:9299 ¡1:2134 ¡0:6913
Variance of Error (deg) 2.0621 3.2046 3.9177 5.0255 9.0960 8.9530

No. of outliers (jerrorj> 10±) 0 0 0 2 1 2

Fig. 7. Error distributions for single target run.

For each configuration, fifteen mote-based (Zigbee
compliant) sensors were randomly distributed within
a 25 m radius area. Configuration II, which contains
tight and sparse sensor clusters, offers better spatial
and frequency diversity; while configuration I offers
better separation of closely spaced vehicles due
to more uniform spreading of the sensors. The
sensor locations were obtained using a relatively
accurate GPS unit to within an average error radius
of 0.1 m. The worst case localization error radius
was around 0.25 m for some sensors. Data were
collected for various runs using either single or
two light wheeled diesel trucks. The recorded data
of each sensor was sampled at fs = 1024 Hz. All
15 sensors transmit, in real-time, the stream of

Fig. 8. Two randomly distributed sensor configurations using 15 mote-based sensors. (a) Configuration I. (b) Configuration II.

synchronized recorded time series in a single hop
to a base station while the vehicles move in the
field. The collected data sets were used not only to
show the real potential of the distributed sensors for
acoustic DOA trajectory estimation of the vehicles
but also to evaluate the empirical performance of
the wideband geometric Capon and the wideband
beamspace Capon algorithms for scenarios where
data transmitted to the base station was lost or
unreliable.
During the data collection some sensors failed to

collect reliable data because of either bad microphone,
or amplifier circuit, or both. To account for sensor
failure in the DOA estimation process, one has to
screen the data and manually remove the failed
data channels before beamforming. This precludes
real-time DOA estimation. To demonstrate the
usefulness of the wideband beamspace method
in these situations, this method is employed here
without using the knowledge of the failed sensors
or their number. In other words the data from
failed sensors is included for beamforming. The
wideband beamspace preprocessing allows the
beamforming to proceed normally and provides
excellent results even in the presence of multiple
failed data channels.
Fig. 10(a) shows the results for a run with one

failed sensor using the wideband geometric mean
Capon beamformer. As can be seen, when the failed
data channel is not removed the DOA estimates vary
significantly with a large number of spurious estimates
and poor angular trajectory estimate of the vehicle.
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Fig. 9. Bearing response patterns obtained for 15-element randomly distributed array observing two sources with angular separations of
1±, 3±, 5±. (a) Wideband geometric Capon. (b) Wideband geometric beamspace Capon.

Fig. 10(c) shows the results of this algorithm after
manually removing the failed data channel. Clearly,
removing the bad data restored the accuracy of DOA
estimation hence providing a reasonably clear vehicle
trajectory estimate. Fig. 10(e), on the other hand,
shows the results when using the wideband beamspace
Capon beamformer. We notice that the beamspace
preprocessing leads to significant improvement in the
angular trajectory estimate of the vehicle without the
need to identify and remove the failed sensor data.
Figs. 10(b), (d), and (f) show the DOA estimates of
these algorithms for a run with two sensor failures.
The results in Fig. 10(b) obtained using the wideband
geometric mean Capon beamformer is completely
unreliable in this case. The improvement that the
beamspace preprocessing method offers over the
wideband geometric mean Capon beamformer
is clearly noticeable. The wideband beamspace
does not provide accurate DOA estimates in the
time segment 90—105 s. This may be attributed
to the fact that at near field the number of sensor
failures has an increasingly detrimental effect on
the ability of the array to provide accurate DOA
estimation.
An explanation for the beamspace robustness to

sensor failure is the inherent complex weighting of
the sensor element inputs in such a way that it only
relies on a subset of the sensors in the array. This
would not normally prevent errors in the beamforming
when a regular geometry array is used. However,
because of the random distributed configuration and
the angular focusing of the beamspace method, the
inputs from the failed sensors add only small errors
into the steering vector. In contrast, the wideband
geometric Capon beamformer performs interference
cancelation over the entire angular field of view,
and hence receives the full effect of the failed
sensors.

VII. CONCLUSIONS

Three wideband Capon beamforming methods
were introduced for estimating the DOAs of multiple
closely spaced moving sources with wideband
acoustic signatures. The proposed methods exploit
different incoherent averaging operations, namely
arithmetic, geometric, and harmonic averaging, of
a set of narrowband Capon spectra. A wideband
robust Capon beamformer was also developed
to robustify the algorithms with respect to array
calibration errors and near field effects. In addition,
the beamspace method was extended to the wideband
case to improve the resolution of DOA estimation
and to offer robustness with respect to sensor
failures.
A study was carried out to benchmark these

different wideband Capon methods in terms of their
beamwidth, DOA accuracy, and effectiveness in
presence of sensor failures. The results suggest the
superiority of the geometric mean Capon beamformer
and the wideband beamspace extension in terms
of the ability to provide accurate DOA estimates.
Although the wideband beamspace method did not
provide substantially better results on the multiple
target run, it greatly reduced the variance of the
DOA estimate error. The results on baseline run 1
also indicated better performance of this method
at far ranges when the sources are hard to detect.
When used in conjunction with distributed sensor
arrays the wideband beamspace algorithm was
found to be robust to sensor data failures. The
robust geometric Capon provided better results
on the uncalibrated data when compared with
those of the wideband geometric mean Capon
beamformer. This was especially prevalent in
near CPA situations where the effects of sensor
location errors are compounded by the near field
effects.
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Fig. 10. Comparison of wideband geometric Capon beamforming and wideband geometric Capon with beamspace preprocessing when
one or two sensor failures occur. Run 2 collected using configuration I, run 1 collected using configuration II (a) Wideband geometric
mean Capon beamformer–run 1. (b) Wideband geometric mean Capon beamformer–run 2. (c) Wideband geometric mean Capon

beamforming–run 1 failed sensor removed. (d) Wideband geometric Capon beamforming–run 2 failed sensors removed.
(e) Wideband beamspace Capon–run 1. (f) Wideband beamspace Capon–run 2.
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A LOS Rate Estimation Method for Bank-to-Turn
Missiles

We compensate for the effect of the fast roll motion of

bank-to-turn (BTT) missiles through appropriate coordinate

transformation. Thereby, the proposed line-of-sight (LOS) rate

estimator can provide better estimation performance than the

previously known passive target tracking methods since it is

independent of seeker-stabilization loop and robust with the

measurement noise.

I. INTRODUCTION

Most well-known guidance laws need the accurate
information of line-of-sight (LOS) rate for their
successful implementation. Since LOS rate cannot be
measured directly, it is usually estimated from some
other measurable quantities based on the dynamic
model of LOS rate. Unfortunately, it is not an easy
problem to design a good LOS rate estimator because
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